## 6-D Cooling using a Super-FOFO Channel

J. Scott Berg
Brookhaven National Laboratory
6 October 2001

#### **6-D Linear Theory**

- Lattice cell described by linear matrix M
- Matrix has eigenvalues

$$Mv_{\alpha} = \lambda_{\alpha}v_{\alpha}$$

- Without absorbers, stable when  $|\lambda_{\alpha}| = 1$
- With absorbers
  - Straight lattice: four  $|\lambda_{\alpha}| < 1$  (transverse), two  $|\lambda_{\alpha}| > 1$  (longitudinal)
  - ◆ General lattice
    - ★ Cooling in all planes: all  $|\lambda_{\alpha}| < 1$
    - ★ Product of eigenvalues depends only on absorber lengths along reference orbit
    - \* Decrease in longitudinal  $|\lambda_{\alpha}|$  requires increase in transverse  $|\lambda_{\alpha}|$

### **Achieving Eigenvalue Mixing**

- Must couple longitudinal to transverse
- Traditional: create dispersion at wedge
- Rotate ellipse in 6-D phase space
  - Rotate by having dispersion in RF cavities
  - ◆ All three phase ellipses have projection in transverse momentum direction
  - ◆ Transverse momentum projection decreased
  - ◆ Rotation small except near synchro-betatron resonance
    - **★** Limited energy bandwidth?
- Angle on absorber faces
  - ◆ Need dispersion at absorber: position depends on energy
  - ◆ Energy reduction dependent on position: coupling
  - ◆ Non-symplectic: no need to be near resonance for coupling







### Two-Cell Map Eigenvalues



### **Results with Angled Faces**

- Bend symmetries must be chosen properly
  - ◆ Some symmetries give transverse momentum dispersion, not position dispersion (+-+-, ++--)
  - ◆ +--+ symmetry gives no average dispersion
- Get wider bandwidth, flatter eigenvalues than resonance method
- $\pi/2$  resonance of two-cell system: small effect
  - Nonlinear trouble?
  - ◆ Smaller dispersion, more face angle fixes

Dispersion Vector Range Parameter is Solenoid Field Strength



## Eigenvalues in SFOFO with Bends

++++ Symmetry, 5 m bend radius, 0° wedge faces



# Eigenvalues in SFOFO with Bends

++++ Symmetry, 5 m bend radius, 35° wedge faces

